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describes an ocean in hydrostatic and geostrophic balance
with water of constant density, bounded by rigid upperA spectral numerical scheme is developed for simulations of two-

dimensional incompressible fluid flow in a circular basin. The vortic- and lower boundaries. It can be shown [9] that this system
ity and streamfunction fields are represented by products of Jacobi is governed by the horizontal advection of absolute vortic-
polynomials and complex exponentials. The Jacobi polynomials ity q with a nondivergent velocity field v 5 k 3 =c, whereare used for the radial dependence of the fields, and the complex

k is a unit vector pointing vertically upward and c is aexponentials for the angular dependence. The basis functions are
orthogonal with respect to the natural inner product for a circular streamfunction. The basin was taken to be circular, with
domain. It is demonstrated how the Laplace operator and its inverse c zero at the boundary (free-slip), and the flow was as-
can be expressed exactly in terms of these basis functions. It is also sumed to be forced by a temporally constant and spatially
shown how the advection term can be evaluated without aliasing,

uniform input of vorticity and damped by Ekman friction.making use of a transform grid with equidistant angular values and
The equation studied was the time-independent version ofGaussian radial values. It is shown that without forcing and friction

the model conserves absolute enstrophy and circulation and, if the
planetary vorticity is circularly symmetric, also angular momentum.
The model does not conserve energy. However, the degree of con- ­q

­t
1 J(c, q) 1 tf 1 kz 5 0. (1)

servation of energy rapidly increases with increasing resolution.
Examples of time integrations will be discussed in the companion
paper (Part II; W. T. M. Verkley, 1997, J. Comput. Phys. 115–131

Here q is the absolute vorticity, q 5 z 1 f, where the relative
136). Q 1997 Academic Press

vorticity z 5 k · = 3 v 5 =2c and f is the planetary vorticity.
The operators =2 and J are the Laplace and Jacobi opera-
tors, respectively.Useof the latteroperator iscommonprac-1. INTRODUCTION
tice in writing the advection term v · =q in terms of a stream-
function. The forcing is 2tf and the Ekman friction is 2kz,The study of two-dimensional incompressible fluid flow

is of considerable interest. In many cases the flow of three- where f is the spatial structure of the forcing and t and k
are numbers measuring the strength of the forcing and thedimensional fluid systems is organized in such a way that

its behavior is essentially two-dimensional. Examples are friction. We will also consider the case in which the friction
is given by a viscosity term n=2z on the right-hand side ofplasma systems in a magnetic field in which the magnetic

field forces the motion to be two-dimensional [6]. Other (1). In this case we impose as an extra boundary condition
that the radial derivative of c equals the velocity of theexamples are large-scale atmospheric and oceanic flows in

which vertical density stratification and the rotation of the boundary (no-slip). We note that, if the forcing and Ekman
friction are zero, the system describes an inviscid two-di-earth force the flow to behave layerwise two-dimensionally

[9]. Understanding the dynamics of two-dimensional fluid mensional and incompressible fluid.
In the study of VZ steady states of (1) were obtainedflows is therefore crucial in grasping the dynamics of im-

portant three-dimensional systems, such as magnetized by expanding this equation in a perturbation series in the
inverse Ekman number k21. For a limited part of the pa-plasmas and the earth’s atmosphere and oceans.

The present paper (Part I) and its companion (Part II) rameter space the series converged and steady states could
be found. The present model is aimed at checking whether[14] have their origin in the study by Verkley and Zimmer-

man [12], hereafter referred to as VZ, on a simple model these steady states can be reproduced by long integrations
of a time-dependent model. In the same way we hope toof the nonlinear wind-driven ocean circulation. The model
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obtain steady solutions in the region of parameter space
where the series does not converge. Furthermore, we ex-
pect the model to be useful in its own right as a research
tool in the study of two-dimensional flows in simple
bounded basins. The circular form of the basin facilitates,
e.g., the application of statistical mechanical techniques to
fluid systems, the results of which might again be checked
by long time integrations with the proposed model.

In Section 2 the basis functions are introduced in terms of
which the spatial structure of the streamfunction and abso-
lute vorticity fields are discretized. It is explained how these
functions can be used to represent the different operators in
(1). The section continues with the formulation of the time-
evolution model and a discussion of its conserved quantities.

FIG. 1. The basic geometry of the system. The flow domain is boundedThe section ends with the description of a procedure to in- by a circle with radius R. On this circle the streamfunction is assumed
corporate the no-slip boundary condition in the case of flow to be zero, implying no normal flow at the boundary. The coordinates
with viscosity. A more detailed exposition of the properties used are the rectangular coordinates x and y and the polar coordinates

r and u. Lengths are measured in units of R.of the basis functions, in particular of the evaluation of the
Laplace operator and its inverse, can be found in Appendi-
ces A and B. Section 3 closes the paper with a summary.

span the same linear function space as the functions Xmn ,
2. THE SPECTRAL METHOD defined by

In this section we will explain how the spectral model Xmn(r, u) ; Vmn(r)eimu, (4)
is constructed. The model in its basic form only respects
the boundary condition that the streamfunction c is zero where
at the boundary, implying no normal flow at the boundary
(free-slip). The vorticity field z, on the other hand, is com- Vmn(r) ; r umur 2k 5 rn. (5)
pletely free. Extra boundary conditions, like the condition

It can be verified that the functions Xmn , in turn, span thethat ­c/­r must be equal to a given velocity distribution at
same space as the functions 1, x, y, x2, xy, y2, x3, x2y,the boundary (no-slip), impose constraints on the vorticity
xy2, y3, etc. As the latter functions are regular (infinitelyfield. How these constraints can be incorporated in the
differentiable) at the origin, the index n in (2) and (4)model will be discussed at the end of this section.
must start with umu and increase in steps of 2. Because

2.1. Basis Functions of the Model polynomials in x and y form a complete set in terms of
which any square integrable function of x and y on aThe basic geometric parameters of the system are given in
bounded domain can be represented, the sets of functionsFig. 1.The modelbasin hasa circularboundary with radius1,
Xmn and Ymn are complete too. Note that for both Ymn andassuming that lengths are expressed in units of the actual
Xmn the radial dependence is a polynomial of degree n.radius R of the basin. Points within the basin are denoted
The transformation formulas between the functions Ymnby the rectangular coordinates x and y, or by the polar coor-
and Xmn are given in Appendix A.dinates r and u. The basis functions that will be used to dis-

For different values of m both the functions Ymn and Xmncretize the spatial structures of the fields in (1) are called
are orthogonal with respect to the following inner product,Ymn(r, u), where m is an integer running from 2y to 1y

and n is an integer assuming the values umu, umu 1 2, umu 1 4,
..., up to y. The functions Ymn are defined by kj1 , j2l ; 1

f
E1

0
E2f

0
r dr duj*1 j2 , (6)

Ymn(r, u) ; Wmn(r)eimu, (2)
where the asterisk denotes complex conjugation. The dif-

where ference between Ymn and Xmn is that the former are also
orthogonal for different values of n with respect to theWmn(r) ; r umuP(0,umu)

k (s) (3)
same inner product. More explicitly, we have

and P(a,b)
k (s) is a Jacobi polynomial with argument s 5

2r 2 2 1 and degree 2k with k 5 (n 2 umu)/2 (see Abram- kYm9n9 , Ymnl 5
dm9mdn9n

n 1 1
, (7)

owitz and Stegun [1, Chap. 22]). The basis functions Ymn
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where d is the Kronecker delta. As the functions Ymn form and the finite-dimensional representation of streamfunc-
tion fields by means of a tilde, we thus writea complete set in terms of which any square integrable

field j(r, u) can be expanded, we have

ĥ 5 O1N

m52N
ON

n5umu
hmnYmn , (12)

j 5 O1y

m52y
Oy

n5umu
jmnYmn , (8)

x̃ 5 O1N

m52N
ON12

n5umu
xmnYmn . (13)

where, due to the orthogonality condition (7), we have for
the expansion coefficients

Note that if the fields ĥ and x̃ are real, which will be the
case in practice, we should have that h2mn 5 h*mn andjmn 5 (n 1 1)kYmn , j l. (9)
x2mn 5 x*mn . We therefore only need to keep track of the

It is understood that in (8) and in summations of the same real and imaginary values of the coefficients for nonnega-
kind the index n assumes the values umu, umu 1 2, umu 1 4, tive values of m. A few examples of the functions Wmn

etc. More information and proofs of the different conjec- that appear in the definition of Ymn are given in Table I.
tures can be found in Appendix A. We represent the latter functions by a diagram in which

We now introduce two finite-dimensional subspaces, each function is denoted by a dot in a lattice of which the
called TN and UN. The space TN is spanned by the func- coordinates are m and n, as illustrated by Fig. 2. The T in
tions Xmn or Ymn with m running from 2N to 1 N and n the name of the finite-dimensional subspace TN refers to
running, in steps of 2, from umu to maximally N. The space the triangular shape of the lattice of points representing
UN is spanned by the functions Xmn or Ymn with m running the space TN in Fig. 2, in analogy to the usage in spectral
from 2N to 1N, but n running from umu to maximally models for a sphere based on spherical harmonics.
N 1 2. As a result of the orthogonality of the basis functions
Ymn we can associate two projection operators, PN and 2.2. Representation of the Operators
QN , that project on these subspaces,

The operators that concern the spatial structure of the
fields are the Laplacian =2 and the Jacobian J, for which

PNj ; O1N

m52N
ON

n5umu
jmnYmn , (10) we have

QNj ; O1N

m52N
ON12

n5umu
jmnYmn , (11) =2x 5

­2x

­x2 1
­2x

­y2 5
1
r

­

­r Sr
­x

­rD1
1
r 2

­2x

­u2 , (14)

where jmn are the expansion coefficients (9). In the spectral J(x, h) 5
­x

­x
­h
­y

2
­x

­y
­h
­x

5
1
r S­x

­r
­h
­u

2
­x

­u

­h
­rD. (15)

model to be developed we assume that all fields with the
dimension of vorticity—such as q, z, f, and f, collectively
denoted by h—are elements of the space TN. Later in this We first discuss the representation of the Laplace opera-

tor =2 and its inverse =22 in terms of the basis functionssection it will be shown that fields with the dimension of
the streamfunction—such as c, collectively denoted by Ymn . The Laplacian and its inverse of the functions Xmn

can readily be found and expressed in the same functions;x—are then elements of UN. If we mark the finite-dimen-
sional representation of vorticity fields by means of a hat see (A22) and (A33) of Appendix A. In expression (A33)

TABLE I

A Few Examples of the Functions Wmn(r) as Defined in (3)

7 r(35r6 2 60r4 1 30r2 2 4) r3(21r4 2 30r2 1 10) r5(7r2 2 6)
6 20r6 2 30r4 1 12r2 2 1 r2(15r4 2 20r2 1 6) r4(6r2 2 5)
5 r(10r4 2 12r2 1 3) r3(5r2 2 4) r5

4 6r4 2 6r2 1 1 r2(4r2 2 3) r4

3 r(3r2 2 2) r3

2 2r2 2 1 r2

1 r
0 1

0 1 2 3 4 5

Note. The columns correspond to different values of m and the rows to different values of n. The table contains all the functions of a T5 spectral model.
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where [? ? ?]mn denotes the expansion coefficients of the
field between the square brackets.

We next discuss the method by means of which the
Jacobian in (1) can be calculated. We recall that any
streamfunction x̃ belongs to UN and that any vorticity ĥ
belongs to TN. This means that x̃ is a polynomial in r with
maximum degree N 1 2 and a trigonometric series in u
with maximum wavenumber N. In the same way, the field
ĥ is a polynomial in r with maximum degree N and a
trigonometric series in u with maximum wavenumber N.
From the definition of the Jacobian in (15) it then follows
that J(x̃, ĥ) is a polynomial in r with maximum degree 2N
and a trigonometric series in u with maximum wavenumber
2N. So the Jacobian of x̃ and ĥ can be written

FIG. 2. Graphical representation of the functions Ymn(r, u) ;
Wmn(r)eimu. Each dot, with coordinates m and n, is to be associated with

J(x̃, ĥ) 5 O2N

m522N
O2N

n5umu
JmnYmn , (18)a function Ymn . Note that the n values increase in steps of 2. The solid

dots shown in this figure represent the space T5. The open dots are the
extra functions in the space U5 needed to represent the streamfunction
associated with any vorticity field in T5. The functions Wmn(r) correspond- where Jmn are the corresponding coefficients given by (see
ing to all the dots in this figure can be found in Table I. (8) and (9))

Jmn 5
n 1 1

f
E1

0
E2f

0
r dr duY*mnJ(x̃, ĥ). (19)

the functions Xmumu are used to satisfy the boundary condi-
tion that the inverse Laplacian of Xmn is zero at r 5 1.

In spectral models, like the one to be developed here, weThis is possible because the Laplacian of the functions
project this Jacobian on the space TN. This means that weXmumu is zero, as can be verified readily from (4), (5), and
only need to calculate the coefficients Jmn for 2N #(14). Using the transformation formulas between Xmn and
m # N and umu # n # N. For these coefficients the integrandYmn , it is shown in Appendix A how the Laplacian and its
in (19) is a polynomial in r with maximum degree 3N andinverse can be found for Ymn and expressed in the same
a trigonometric series in u with wavenumbers not ex-functions. The result is

=2Ymn 5 On22

n95umu

(n9 1 1)(n 2 n9)(n 1 n9 1 2)Ymn9 , (16a)

=22Ymn 5H2[4(n 1 1)(n 1 2)]21Ymn 1 [4(n 1 1)(n 1 2)]21Ymn12 (n 5 umu)

[4n(n 1 1)]21Ymn22 2 [2n(n 1 2)]21Ymn 1 [4(n 1 1)(n 1 2)]21Ymn12 (n $ umu 1 2).
(16b)

ceeding 3N. This means that the integral in (19) can beWe see that if x̃ is an element of UN then =2x̃ is contained
calculated exactly by summation if the number of pointsin TN. Furthermore, if ĥ is an element of TN then =22ĥ
is large enough. In fact, the integral over u can be replacedis contained in UN. It can be deduced from expressions
by a summation over K equidistant values uK

i 5 (i 2 1)(16) that we have

[=2x̃]mn 5 ON12

n95n12

(n 1 1)(n9 2 n)(n9 1 n 1 2)xmn9 , (17a)

[=22ĥ]mn 5H2[4(n 1 1)(n 1 2)]21hmn 1 [4(n 1 2)(n 1 3)]21hmn12 (n 5 umu)

[4n(n 2 1)]21hmn22 2 [2n(n 1 2)]21hmn 1 [4(n 1 2)(n 1 3)]21hmn12 (n $ umu 1 2),
(17b)
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TABLE II the space TN. Written out in terms of coefficients this
equation readsValues of the Maximum Value Nmax of the Truncation Limit

N for a Few Selected Values K and L 5 K/2, Where K is a
Power of 2 dqmn

dt
1 Jmn 1 tfmn 1 kzmn 5 0, (22)

K L Nmax

16 8 5 where the coefficients of qmn and zmn are related by
32 16 10 qmn 5 zmn 1 fmn and those of zmn and cmn by Eq. (17). The
64 32 21 coefficients of the Jacobian are calculated using (20). We

128 64 42
repeat that, due to the fact that all fields are real, we only256 128 85
need to keep track of the real and imaginary parts of the

Note. The value Nmax is the maximum value of N for which K $ coefficients for nonnegative m. Following Canuto et al. [3]
3N 1 2 and L $ (3N 1 1)/2. For values of N not exceeding Nmax the we call (21) or (22) semidiscrete, as the time dependence
coefficients Jmn with 2N # m # N and umu # n # N of the Jacobian can is still continuous. In this paper we will use a fourth-order
be calculated exactly by the summation (20).

Runge–Kutta discretization to step the system forward in
time. Assuming that there is no explicit time dependence
in our system the Runge–Kutta scheme can be written as
follows. First we write (21) as(2f/K) and equal weights FK 5 (2f/K) if K $ 3N 1 1.

The integral over r can be replaced by a summation over
L Gauss–Legendre points r L

j with corresponding weights ­q̂
­t

5 T̂(q̂), (23)GL
j if L $ (3N 1 1)/2 (see Krylov [7]). So, the projection

on TN of the Jacobian of a streamfunction field x̃ and a
vorticity field ĥ, of which the first is an element of UN and where
the second is an element of TN, can be calculated exactly
by summation if K $ 3N 1 1 and L $ (3N 1 1)/2.

T̂(q̂) 5 2PNJ(c̃, q̂) 2 tf̂ 2 kẑ. (24)More explicitly,

If q̂i and c̃ i are the approximations of q̂ and c̃ at time
ti 5 i Dt, then according to the fourth-order Runge–KuttaJmn 5

n 1 1
f OK

i51
OL
j51

FKGL
j r L

j Y*mn(r L
j , uK

i )

(20) scheme we have

3 J(x̃(r L
j , uK

i ), ĥ(r L
j , uK

i )).
q̂i11 5 q̂i 1 AhF̂1 1 AdF̂2 1 AdF̂3 1 AhF̂4 , (25)

The values of Ymn and its derivatives with respect to r in
wherethe points (r L

j , uK
i ) can be calculated using recurrency rela-

tions for Ymn . These relations are given in Appendix A.
F̂1 5 DtT̂(q̂i) (26a)For the summations over i a fast Fourier transform routine

is used. This routine is the most efficient if K is a power F̂2 5 DtT̂(q̂i 1 AsF̂1) (26b)
of 2. In Table II we show a few values of K and L 5

F̂3 5 DtT̂(q̂i 1 AsF̂2) (26c)K/2 that are powers of 2 and the maximum value of N,
called Nmax , for which K $ 3N 1 1 and L $ (3N 1 1)/2. F̂4 5 DtT̂(q̂i 1 F̂3). (26d)
Note that the functions Wmn in the truncation T5 are given
in Table I. The basis functions Ymn of this truncation are For more information on time-stepping schemes we refer
represented graphically in Fig. 2. to Canuto et al. [3] and Press et al. [10].

Important global quantities of the system are the abso-
2.3. Time Evolution and Conserved Quantities lute enstrophy, circulation, angular momentum, and en-

ergy. Using that v 5 k 3 =c and partial integration in theWe are now in the position to formulate the spectral
integration over r, these quantities can be written in termsmodel of (1). It can be written as
of the inner product (6)

­q̂
­t

1 PNJ(c̃, q̂) 1 tf̂ 1 kẑ 5 0, (21)
QN 5

f
2

kq̂, q̂l, (27)

CN 5 f k1, ẑ l, (28)where we recall that PN is the operator that projects on
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AN 5 22f kc̃, 1l, (29) dQN

dt
5 f Kq̂,

­q̂
­tL5 f kq̂, PNJ(q̂, c̃)l 5 f kPNq̂, J(q̂, c̃)l

(36)EN 5 2
f
2

kc̃, ẑ l, (30)
5 f kq̂, J(q̂, c̃)l 5 f kJ(q̂, q̂), c̃)l 5 0,

which proves that absolute enstrophy is still conserved.where we note that the inner product (6) can be written
For the rate of change of circulation we havein terms of the coefficients j1mn and j2mn of j1 and j2 ,

dCN

dt
5 f K1,

­ẑ

­tL5 f k1, PNJ(q̂, c̃)l
(37)kj1 , j2l 5 O1y

m52y
Oy

n 5 umu

j*1mnj2mn

n 1 1
. (31)

5 f k1, J(q̂, c̃)l 5 f kJ(1, q̂), c̃l 5 0,

which shows that also the circulation is conserved in the(For the truncated fields in the expressions above the range
semidiscrete system. To prove that for a circularly symmet-of m and n is, of course, finite.) In the inviscid case, i.e.,
ric planetary vorticity f also the angular momentum isthe case without forcing and friction, the equations without
conserved in the semidiscrete system we note that 1 5space and time discretizations conserve absolute en-
=2r, where r 5 Af(r 2 2 1). This enables us to writestrophy, circulation as well as energy, and, if the planetary

vorticity is circularly symmetric, also angular momentum.
We will show that, without forcing and friction, the abso- dAN

dt
5 22f K­c̃

­t
, 1L5 22f K­c̃

­t
, =2rL5 22f K­ẑ

­t
, rL

lute enstrophy and the circulation are still conserved in
the semidiscrete system, i.e., in the system without the

5 2f kPNJ(c̃, q̂), rl 5 2f kJ(c̃, q̂), PNrl
(38)

Runge–Kutta time discretization. In this case also the an-
gular momentum remains to be conserved, under the con-

5 2f kJ(c̃, q̂), rl 5 2f kc̃, J(q̂, r)l
dition that the planetary vorticity is circularly symmetric.
The energy, however, is not conserved. The proofs become

5 2f Kc̃,
­q̂
­u
L5 2f Kc̃,

­ĵ

­u
L z 5 0.elementary by using the following properties of the projec-

tion operator PN , the Laplace operator =2, the Jacobian
J, and the operator ­/­u. First, the projection operator Note that the assumption of circular symmetry of the plan-
PN is self-adjoint etary vorticity allowed us to use that ­q̂/­u 5 ­ẑ/­u. The

last expression in (38) is zero because
kj1 , PNj2l 5 kPNj1 , j2l. (32)

Kc̃,
­ẑ

­u
L5 2 K­c̃

­u
, ẑL5 2 K­ẑ

­u
, c̃L5 2 Kc̃,

­ẑ

­u
L. (39)

This can be proven from its definition and Eqs. (8) and
(9). Also, the Laplace operator is self-adjoint if j1 and j2 This proves that in the inviscid case the semidiscrete system
are both zero at the boundary r 5 1 conserves angular momentum if the planetary vorticity f

is circularly symmetric. To derive an expression for the
kj1 , =2j2l 5 k=2j1 , j2l. (33) rate of change of the energy EN we write

c̃ 5 c̃l 1 c̃h , (40)This can be proven by partial integration. By the same
method it can be proven that the Jacobian satisfies

where c̃l is that part of c̃ given by the coefficients cmn with
n # N and c̃h the part given by the higher coefficients. We

kj1 , J(j2 , j3)l 5 kJ(j1 , j*2 ), j3) (34) then have, as PNc̃ 5 c̃l 5 c̃ 2 c̃h ,

if either j1 or j2 is zero at r 5 1. Finally, the derivative dEN

dt
5 2f Kc̃,

­ẑ

­tL5 f kc̃, PNJ(c̃, q̂)l 5 f kPNc̃, J(c̃, q̂)l
operator ­/­u satisfies

5 f kc̃, J(c̃, q̂)l 2 f kc̃h , J(c̃, q̂)l
(41)Kj1 ,

­j2

­u
L5 2K­j1

­u
, j2L. (35) 5 f kJ(c̃, c̃), q̂)l 2 f kc̃h , J(c̃, q̂)l

5 2f kc̃h , J(c̃, q̂)l ? 0.
After these preliminaries we can write for the rate of
change of absolute enstrophy in the semidiscrete system This shows that in the semidiscrete system energy is not
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conserved. However, we see that the degree of nonconser- planetary vorticity is zero and in which there is no vorticity
forcing nor Ekman friction. If the boundary moves with avation is determined by the amplitude of c̃h , i.e., by that

part of the streamfunction c̃ that falls outside TN. As c is prescribed velocity ub(u), then the presence of viscosity
implies that an additional boundary condition of no-slipusually a rather smooth function of the spatial coordinates r

and u, we expect the streamfunction to have a steeply needs to be imposed:
decaying spectrum in terms of the basis functions Ymn . We
therefore expect that the amplitude of c̃h will fall off rapidly F­c̃(r, u)

­r G
r51

5 ub(u). (48)with increasing truncation N and the degree of nonconser-
vation of energy to decrease rapidly with increasing resolu-
tion. The two examples discussed in Subsection 2.1 of Part

As the streamfunction is completely determined from theII will confirm this.
vorticity by (16b) or (17b), any additional boundary condi-With the time discretization the conservation properties
tion must be incorporated in terms of a constraint on theof QN , CN , and AN , are lost in principle, although a suffi-
vorticity. How this works out for the no-slip boundaryciently small value of Dt will keep the degree of nonconser-
condition will be explained now. We first assume that ub(u)vation at an acceptable level. It was shown by Walsteijn
can be written as a finite Fourier series of complex expo-[13], however, that it is possible to modify the Runge–
nentials:Kutta integration scheme in such a way that it restores the

conservation of, e.g., absolute enstrophy. We will not make
use of that possibility.

ub(u) 5 ON
m52N

ubmeimu. (49)

2.4. Additional Boundary Conditions

From (44) we have, on the other hand,The model as discussed until now satisfies only one
boundary condition:

F­c̃(r, u)
­r G

r51
5 ON

m52N
ON

n5umu
zmn F­=22Ymn(r, u)

­r G
r51

. (50)[c̃(r, u)]r51 5 0. (42)

By construction, the inverse Laplacian (16b) has the prop- According to (A14) of Appendix A the radial derivatives
erty that for every ẑ in the space TN the corresponding c̃ of Wmn at r 5 1 are given by
in the space UN satisfies this condition. To check that this
is true, we start with FdWmn(r)

dr G
r51

5
n2 1 2n 2 m2

2
, (51)

ẑ(r, u) 5 ON
m52N

ON
n5umu

zmnYmn(r, u) ⇒ (43)

from which it follows, due to (16b),

c̃(r, u) 5 ON
m52N

ON
n5umu

zmn=22Ymn(r, u) ⇒ (44)

F­=22Ymn(r, u)
­r G

r51
5H[2(n 1 1)]21eimu (n 5 umu)

0 (n $ umu 1 2).[c̃(r, u)]r51 5 ON
m52N

ON
n5umu

zmn[=22Ymn(r, u)]r51 . (45)
(52)

According to (A13) of Appendix A the values of Wmn at It can therefore be deduced that
r 5 1 are given by

[Wmn(r)]r51 5 1, (46) F­c̃(r, u)
­r G

r51
5 ON

m52N

zmumu

2(umu 1 1)
eimu, (53)

from which it can be deduced, with the help of (16b),
so that the boundary condition (48) reduces to

[=22Ymn(r, u)]r51 5 0, (47)
zmumu 5 2(umu 1 1)ubm . (54)

so that (42) is indeed satisfied.
We now consider the case in which a viscosity term is So, the no-slip boundary condition fixes the coefficients

zmumu in terms of the Fourier coefficents ubm of the velocityadded to our system, so that the right-hand side of (1) is
n=2z. For simplicity we consider the case in which the of the boundary.
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The results of the foregoing paragraph imply that the
=2S̃5 ON

m52N
ON12

n5umu12
Smn=2Ymnvorticity ẑ is to be written as

ẑ 5 ẑb 1 ẑh , (55) 5 ON
m52N

ON12

n5umu12
Smn F On22

n95umu
(n9 1 1)(n 2 n9)(n 1 n9 1 2)Ymn9G

where ẑb is the part of the vorticity field of which the
5 ON

m52N
ON

n95umu
F ON12

n5n912

Smn(n9 1 1)(n 2 n9)(n 1 n9 1 2)GYmn9 ,coefficients zmumu are fixed by the boundary condition (54)
with all higher coefficients zero, and ẑh is a vorticity field (59)
of which the coefficients zmn with n $ umu 1 2 are free but
of which the coefficients zmumu are zero. Let us assume that from which we deduce that, with the help of (7),
we start a model integration with a vorticity field that
satisfies condition (54). It is then important that the model
dynamics is such that (54) remains valid, i.e., that the coef- kYmumu , =2S̃l 5 ON12

n5umu12
Smn(n 2 umu)(n 1 umu 1 2). (60)

ficients zmumu do not change in time and (55) remains a valid
decompostition. When the planetary vorticity, the vorticity

The requirement thus assumes the formforcing, and the Ekman friction are zero but there is a
viscosity term, the semidiscrete form of the model is given
by (23) and (24) with q̂ replaced by ẑ and 2tf̂ 2 kẑ ON12

n5umu12
Smn(n 2 umu)(n 1 umu 1 2) 5 0. (61)replaced by n=2ẑ. A straightforward way of making sure

that the coefficients zmumu do not change in time is to
replace the tendency term T̂(ẑ) in (23) by P h

NT̂(ẑ), This is a linear constraint on the coefficients Smn for
where P h

N is a projection operator that projects on umu 1 2 # n # N 1 2. It can be satisfied in many ways. In
vorticity fields of which the coefficients zmumu are zero. practice we adjust the coefficients Smn with the highest
There are, however, two problems with this approach. value of n (either n 5 N 1 2 or n 5 N 11, depending on the
First, it can be shown by simple analytical examples that value of m) so that (61) is satisfied. The model equations for
in this case the viscosity term causes unlimited growth, the viscous case—with the planetary vorticity, vorticity
independent of the temporal or spatial discretization. forcing, and Ekman friction assumed to be zero—are thus
Second, it suppresses the advection of vorticity to such given by (23), (56), and (57), where q̂ 5 ẑ and S̃ is modified
a degree that the time evolution becomes unrealistically such that the coefficients Smn satisfy (61).
slow. After experimenting with several alternatives, the In this last subsection we have discussed only the no-slip
following procedure was chosen instead. We start by boundary condition, as this is a widely used and physically
writing the tendency term as sensible boundary condition if the flow is viscous. Other

boundary conditions can also be imposed, e.g., the condi-
tion that ẑ has a prescribed distribution at the boundary.T̂(ẑ) 5 =2S̃(ẑ), (56)
This condition has been used in long simulations of two-
dimensional weakly viscous flow. This, and other possible

where boundary conditions, can be incorporated in analogous
ways.

Here the mathematical formulation of the spectralS̃(ẑ) 5 2=22 PNJ(c̃, ẑ) 1 nẑ. (57)
model ends. The numerical code for this model was written
in FORTRAN on the basis of a (hemi)spheric spectral

This is an exact expression as =2=22 is the identity operator model—coded earlier by the author—for two-dimensional
in the space TN. The field S̃, which is an element of the fluid flow on a sphere. More details of the present model
space UN, is now modified by requiring that the Laplacian and a discussion of six examples of time integrations can
of S̃ does not project on the functions Ymumu . The latter be found in the companion paper (Part II).
requirement can be written as

3. SUMMARY

kYmumu , =2S̃l 5 0. (58)
We have developed a spectral numerical model for two-

dimensional incompressible fluid flow in a circular basin.
The equation governing such flow is (1), where q is theTo formulate it in terms of the coefficients Smn of S̃ we

note that, using (16a) in the second equality and changing absolute vorticity—the sum of the relative vorticity z and
the planetary vorticity f—and c is the streamfunction. Thethe order of the summations in the third equality,
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absolute vorticity q is advected by a two-dimensional diver- It can be deduced that this requirement fixes the expansion
coefficients zmumu of the vorticity in terms of the Fouriergence-free velocity field v 5 k 3 =c as expressed by the

Jacobian of c and q. The streamfunction is zero at the coefficients of the velocity of the boundary, as expressed
by (54). In order to ensure that the dynamics does respectboundary, which implies that there is no normal flow at

the boundary (free-slip). Apart from being advected, the this condition, the tendency term T̂ in (23) is written as
the Laplacian of a field S̃—given by (57)—which field isabsolute vorticity is forced by a vorticity forcing -tf, where

f is the spatial structure of the forcing and t is its amplitude. then modified such that the tendency term does not project
on the basis functions Ymumu . The condition that the ten-The vorticity is damped by a term proportional to the

relative vorticity, i.e., by -kz, which is called Ekman friction. dency term does not project on the functions Ymumu is given
by (61) and is a linear relation in terms of the coefficientsAlso considered is the case in which the right-hand side

of (1) equals n=2z, where n is the viscosity. For this viscous Smn with umu 1 2 # n # N 1 2. It is satisfied by adjusting
the highest coefficients Smn to the lower ones.flow we impose as an extra boundary condition that the

radial derivative of c is equal to the velocity ub of the We recall that the basis functions Ymn (defined in (2)
and (3)) span the same linear vector space as the functionsboundary (no-slip).

Vorticity fields are written in terms of the functions Xmn (defined in (4) and (5)) which, in turn, span the same
linear vector space as the functions 1, x, y, x2, xy, y2, x3,Ymn(r, u), defined in (2) and (3), where r and u are polar

coordinates, 0 # r # 1, 0 # u , 2f, and m and n are x2y, xy2, y3, etc. The functions Xmn emerge naturally from
the perturbation approach to the simple wind-driven oceanintegers, 2N # m # N, umu # n # N with n 5 umu 1 2k,

k 5 0, 1, 2, .... The functions Ymn(r, u) are products of the circulation problem studied by Verkley and Zimmerman
[12]. The functions Ymn can, in fact, be obtained by orthogo-complex exponentials eimu and the functions r umuP(0,umu)

k (s),
where P(a,b)

k (s) are Jacobi polynomials with argument s 5 nalizing the functions Xmn with respect to the inner product
(6). The functions Xmn and Ymn can be transformed into2r2 2 1 (see Abramowitz and Stegun [1, Chap. 22]). The

number N is called the truncation limit and the vector each other and this makes it possible, e.g., to derive analytic
expressions for the Laplacian and its inverse in terms ofspace spanned by the functions Ymn is called TN. The

inverse Laplacian of each function Ymn in TN—such that Ymn . It also makes clear that the functions Ymn do not
suffer from a ‘‘pole problem’’; i.e., they are infinitely differ-it is zero at the boundary—turns out to be a linear combina-

tion of Ymn22 , Ymn , and Ymn12 . As the inverse Laplacian entiable at r 5 0.
Without this particular background (or bias) one mightis a linear operator, this can be used to find the streamfunc-

tion associated with any vorticity field in TN. Indeed, the have proposed other basis functions, like products of Bes-
sel functions or Chebyshev polynomials in r and complexstreamfunction of any vorticity field in TN is the sum of

the streamfunctions associated with each of its individual exponentials in u. Although Bessel functions have the ad-
vantage of giving basis functions that are eigenfunctionscomponents and will be an element of a higher-dimen-

sional space that we call UN. For a vorticity field that is of the Laplacian, the calculation of the Jacobian coeffi-
cients in (20) with Gauss–Legendre points would havean element of the space TN and a streamfunction field

that is an element of UN, the Jacobian of the streamfunc- been impossible. With Chebyshev polynomials this would
have been possible indeed—in fact the calculation couldtion and the vorticity as projected on the space TN can be

calculated exactly by summation using at least 3N 1 1 be faster because a fast Fourier transform can then also
be applied in the integration over r—but the integrationequidistant u values and (3N 1 1)/2 Gaussian r values.

The resulting spectral numerical scheme without time dis- points to be used cluster near r 5 0, necessitating a very
short time step in the time discretization. However, othercretization and without forcing and friction is shown to

conserve circulation, angular momentum (if the planetary possibilities exist and a very general approach to the prob-
lem can be found in Dubiner [4]. In fact, the use of thevorticity is circularly symmetric), and absolute enstrophy,

although energy is not conserved. functions Ymn (as we have called them) was first suggested
in this reference. Matsushima and Marcus [8] focus on aFrom the foregoing it follows that if c 5 0 at r 5 1 is

the only boundary condition, the vorticity fields within the spectral method for polar coordinates and provide a wide
class of basis functions that do not suffer from the problemsspace TN are free, i.e., do not satisfy any constraints. The

presence of a viscosity term, and the additional boundary mentioned above. The basis functions that they propose
are products of complex exponentials in u and functionscondition that ­c/­r 5 ub at r 5 1, leads to a constraint

on the vorticity which is treated as follows. First, we obtain called Qm
n (a, b; r), defined by their Eq. (3). Recurrency

relations, convergence properties, and the representationexplicit expressions of the radial derivative of c at r 5 1
in terms of the coefficients of the vorticity. This is possible of different operators are being studied, and two examples

are given to illustrate their use. The first of these examplesbecause, as just explained, the streamfunction is completely
fixed by the vorticity. We then require that the radial deriv- concerns the eigenvalue problem that leads to Bessel func-

tions, and it was concluded that with a 5 1 and b 5 1ative of c at r 5 1 is equal to the velocity ub of the boundary.
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their functions give the best convergence properties. As it
happens, for a 5 1 and b 5 1, their Qm

n ( a, b; r) is identical Sm 1 k

k
D5

(m 1 1)k

k!
, (A3)

to our Wmn(r), as can be verified from their Eq. (3) and
our Eqs. (3) and (A6).

(2k)k9 5H(21)k9k![(k 2 k9)!]21, k9 # k

0, k9 . k,
(A4)

APPENDIX A

(m 1 1)k(m 1 1 1 k)k9 5 (m 1 1)k9(m 1 1 1 k9)k . (A5)The Jacobi Polynomials

In this appendix we discuss some basic properties of To prove the latter equation we used the definition of the
the functions Wmn(r) 5 r umuP(0,umu)

k (s). We start by defining Pochhammer symbol in terms of G functions. Substituting
the Jacobi polynomials P(0,m)

k (s) in terms of hypergeomet- (A2) into (A1) and using the expressions above we obtain
ric functions. Then two recurrency relations are given
by means of which the functions Wmn(r) and their deriva-
tives with respect to r can be calculated in a numerically P(0,m)

k (s) 5 (21)k Ok
k950

(21)k9 (m 1 1 1 k9)k

(k 2 k9)!k9!
r 2k9. (A6)

stable way. After this the relationship with the functions
Xmn is discussed. This relationship is used in the calcula-

We therefore see that P(0,m)
k (s) is a polynomial in r withtion of the Laplacian and its inverse in terms of the

degree 2k. The fact that the functions Ymn with differentfunctions Ymn . In the latter calculations a theorem on
values of n are orthogonal can be demonstrated by noticingPochhammer symbols is used, which is proved in Appen-
that for the inner product of Ymn9 and Ymn , where n 5dix B.
m 1 2k and n9 5 m 1 2k9, we have

A.1. Definitions

kYmn9 , Ymnl 5 (1/2)m11 E1

21
ds(1 1 s)mP(0,m)

k9 (s)P(0,m)
k (s).Several equivalent definitions of Jacobi polynomials

P(a,b)
k (s) can be found in Chapter 22 of Abramowitz and (A7)

Stegun [1] and Chapter 10 of Erdélyi [5]. In the definition
of Ymn we need these polynomials for a 5 0, b 5 umu, and According to (22.1.1), (22.1.2), and (22.2.1) of Abramowitz
k 5 (n 2 umu)/2. In the following we will delete the absolute and Stegun [1] the right-hand side of this expression is
value signs around m and assume, without loss of general- equal to (2k 1 m 1 1)21dkk9 5 (n 1 1)21dnn9 . We note that
ity, that m is nonnegative. A convenient expression of the the squared norm of the functions Ymn is equal to the
Jacobi polynomials is (16) from Section 10.8 of Erdélyi squared norm of the functions Xmn .
[5]. For a 5 0 and b 5 m it follows from this expression
that A.2. Recurrency Relations

The starting point for the recurrency relations that we
need are (22.7.1) and (22.8.1) of Abramowitz and StegunP(0,m)

k (s) 5 (21)kSm 1 k

k
D

(A1)
[1]. For the functions P(0,m)

k (s) these relationships read

2(k 1 1)(m 1 1 1 k)(m 1 2k)P(0,m)
k11 (s)3 F S2k, m 1 1 1 k; m 1 1;

1 1 s
2 D,

5 [2(m 1 1 1 2k)m2

(A8)
where F is the hypergeometric function, defined in (15.1.1) 1 (m 1 2k)(m 1 1 1 2k)(m 1 2 1 2k)s]P(0,m)

k (s)
of Abramowitz and Stegun [1]:

2 2k(m 1 k)(m 1 2 1 2k)P(0,m)
k21 (s)

F(a, b; c; z) ; Oy
k950

(a)k9(b)k9

(c)k9

zk9

k9!
. (A2) and

(m 1 2k)(1 2 s2)
d
ds

P(0,m)
k (s)

(A9)
Here ( ) is the binomial coefficient and (z)i is the Pochham-
mer symbol, defined by (z)i 5 G(z 1 i)/G(z) or (z)0 5 1

5 2k[m 1 (m 1 2k)s]P(0,m)
k (s) 1 2k(m 1 k)P(0,m)

k21 (s).and (z)i 5 z(z 1 1) ? ? ? (z 1 i 2 1) for i 5 1, 2, .... The
symbol G denotes the Gamma function, whose properties
are given in Chapter 6 of Abramowitz and Stegun [1]. It From the relations above it can then be readily verified

that for the functions Wmn(r) we havecan be verified easily that



110 W. T. M. VERKLEY

to (8) and (9) and the fact that both Xmn and Ymn are
Wmn12(r) 5 F 2(m 1 1 1 2k)m2

2(k 1 1)(m 1 1 1 k)(m 1 2k) polynomials in r of degree 2k we can write

1
(m 1 1 1 2k)(m 1 2 1 2k)

2(k 1 1)(m 1 1 1 k)
sGWmn(r) (A10) Xmn 5 Ok

k950

(m 1 1 1 2k9)kYmn9 , XmnlYmn9 . (A16)

2
k(m 1 k)(m 1 2 1 2k)

(k 1 1)(m 1 1 1 k)(m 1 2k)
Wmn22(r) For the inner product we have

kYmn9 , Xmnl 5 (1/2)m1k11 E1

21
ds(1 1 s)m1kP(0,m)

k9 (s)

(A17)
and

5
G(k 1 1)G(m 1 1 1 k)

G(k 2 k9 1 1)G(m 1 2 1 k 1 k9)
,r

d
dr

Wmn(r) 5 Sm 2
2k[m 1 (m 1 2k)s]

(m 1 2k)(1 2 s) DWmn(r)

(A11)
where in the latter equality we used Eq. (1) of Section 16.4

1
4k(m 1 k)

(m 1 2k)(1 2 s)
Wmn22(r).

from Erdélyi [5].1 Now, using elementary properties of the
G function, it can be shown that

It follows from (A6) that
G(k 1 1)

G(k 2 k9 1 1)
5 (k 2 k9 1 1)k9 , (A18)

Wm(r) 5 rm, (A12a)

Wm12(r) 5 rm[2(m 1 1) 1 (m 1 2)r2]. (A12b) G(m 1 1 1 k)
G(m 1 2 1 k 1 k9)

5
1

(m 1 1 1 k 1 k9)(m 1 1 1 k)k9
,

For any value of m we can then use (A10) to calculate all (A19)
the functions Wmn(r) with n 5 m, m 1 2, m 1 4, etc., in
any point r. Subsequently, relation (A11) can be used to so that
calculate the derivatives with respect to r of these functions.
From (A10) and (A12) it can be proven that we have for

kYmn9 , Xmnl 5
(k 2 k9 1 1)k9

(m 1 1 1 k 1 k9)(m 1 1 1 k)k9
. (A20)Wmn(r) at r 5 1

[Wmn(r)]r51 5 1. (A13) Substituting this in (A16) gives

The proof is by induction. From (A12) it follows that (A13)
Xmn 5 Ok

k950

(m 1 1 1 2k9)
(m 1 1 1 k 1 k9)

(k 2 k9 1 1)k9

(m 1 1 1 k)k9
Ymn9 , (A21)is true for m and m 1 2 and (A10) can be used to prove

that it is true for all higher values of n. In the same way,
although with considerable more algebra, it can be proven which is the desired result.
from (A11) and (A12) that

A.4. The Laplacian =2 and Its Inverse =22

It can be verified easily thatFdWmn(r)
dr G

r51
5

n2 1 2n 2 m2

2
. (A14)

=2Xmn 5 4k(m 1 k)Xmn22 . (A22)
Again, the proof is by induction, using (A12) in the starting
step and (A11) in the induction step. We apply the Laplacian to (A15), use the equation above,

and then use (A21) with k and k9 replaced by k9 and k0.
A.3. Relations between Xmn and Ymn We next change the order of the summations over k and

k9 and interchange primed and doubly primed variablesFrom expression (A6) it is seen immediately that Ymn

can be expressed in terms of Xmn . We have, writing n9 5 to obtain
m 1 2k9,

=2Ymn 5 Ok21

k950

Lkk9Ymn9 , (A23)
Ymn 5 (21)k Ok

k950

(21)k9 (m 1 1 1 k9)k

(k 2 k9)!k9!
Xmn9 . (A15)

1 This expression should contain an extra n! in the denominator, ac-
cording to Eq. (11) on page 583 of Section 2.22.2 of Prudnikov et al. [11].It is also possible to express Xmn in terms of Ymn . According
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with
=2Ymn 5 On22

n95m

(n9 1 1)(n 2 n9)(n 1 n9 1 2)Ymn9 . (A32)

Lkk9 5 4(m 1 1 1 2k9)(21)k Ok
k05k911

(21)k0

(A24) This is identical to (16a). Equation (17a) can be derived
by starting from expression (13) of a streamfunction x̃. We

3
(m 1 1 1k0)k

(k 2 k0)!k0!
k0

(m 1 k0)(k0 2 k9)k9

(m 1 k9 1 k0)(m 1 k0)k9
. apply the result above, change the order of the summations,

and interchange primed and unprimed variables after
which (17a) follows immediately.To simplify this expression we use

It can also be checked quite straightforwardly that

(m 1 k0)
(m 1 k9 1 k0)

1
(m 1 k0)k9

5
1

(m 1 1 1 k0)k9
, (A25)

=22Xmn 5
1

4(k 1 1)(m 1 k 1 1)
(Xmn12 2 Xmm). (A33)

(m 1 1 1 k0)k

(m 1 1 1 k0)k9
5 (m 1 1 1 k9 1 k0)k2k9 , (A26)

Note that the term proportional to Xmm has a zero Lapla-k0(k0 2 k9)k9

k0!
5

1
(k0 2 k9 2 1)!

, (A27) cian and is used to satisfy the boundary condition
[=22Xmn(r, u)]r51 5 0. In the same way as we obtained
(A23) and (A24) we can derive, using the expression above

so that in combination with (A15) and (A21),

Lkk9 5 4(m 1 1 1 2k9)(21)k Ok
k05k911

(21)k0

(A28) =22Ymn 5 Ok11

k950

L21
kk9Ymn9 , (A34)

3
(m 1 1 1 k9 1 k0)k2k9

(k0 2 k9 2 1)!(k 2 k0)!
.

with
Introducing the new variable l 5 k0 2 k9 2 1 we can
rewrite this expression as

L21
k0 5 1/4(21)k Ok

k050

(21)k0

Lkk9 5
4(21)k1k911

(k 2 k9 2 1)!
(m 1 1 1 2k9) Ok2k921

l50
(21)l

(A29) 3
(m 1 1 1 k0)k

(k 2 k0)!k0!(k0 1 1)(m 1 1 1 k0)

3Sk 2 k9 2 1

l
D (m 1 2 1 2k9 1 l)k2k9 .

3 S (m 1 1)
(m 1 2 1 k0)

2 1D, (A35a)

If we now use Theorem (B1), proved in Appendix B, for
L21

kk9 5 1/4(21)k(m 1 1 1 2k9) Ok
k05k921

(21)k0
i 5 k 2 k9 2 1, k 5 1, and z 5 m 1 2 1 2k9 we can write

3
(m 1 1 1 k0)k

(k 2 k0)!k0!(k0 1 1)(m 1 1 1 k0)Ok2k921

l50
(21)lSk 2 k9 2 1

l
D (m 1 2 1 2k9 1 l)k2k9

(A30)
3

(k0 2 k9 1 2)k9

(m 1 2 1 k9 1 k0)(m 1 2 1 k0)k9
, (A35b)5 (21)k2k921(2)k2k921(m 1 1 1 k 1 k9)1 .

This gives
where in the last expression k9 $ 1. Note that we again
changed the order of the summations over k9 and k0 andLkk9 5 4(m 1 1 1 2k9)(k 2 k9)(m 1 1 1 k 1 k9)

(A31) then interchanged primed and doubly primed variables.
5 (n9 1 1)(n 2 n9)(n 1 n9 1 2), Using that

where we used that n 5 m 1 2k and n9 5 m 1 2k9.
Substituting this expression into (A23), summing over n9 (m 1 1)

(m 1 2 1 k0)
2 1 5 2

(k0 1 1)
(m 1 2 1 k0)

(A36)
instead of k9, we get
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we can write for L21
k0 L21

kk9 5 1/4(21)k(m 1 1 1 2k9) Ok
k05k921

(21)k0

L21
k0 5 1/4(21)k11 Ok

k050

(21)k0

(A37)
3

1
(k 2 k0)!(k0 2 k9 1 1)!

1
(m 1 1 1 k 1 k0)k92k12

.

3
(m 1 1 1 k0)k

(k 2 k0)!k0!(m0 1 1 1 k0)(m 1 2 1 k0)
. (A45)

It can be checked readily from this expression that It can be checked from this expression that

L21
0,0 5

21
4(m 1 1)(m 1 2)

, (A38a)
L21

kk11 5
1

4(m 1 1 1 2k)(m 1 2 1 2k)
, (A46a)

L21
1,0 5

1
4(m 1 2)(m 1 3)

. (A38b)

L21
kk 5

21
2(m 1 2k)(m 1 2 1 2k)

, (A46b)

For k $ 2 we use that

L21
kk21 5

1
4(m 1 2k)(m 1 1 1 2k)

. (A46c)
(m 1 1 1 k0)k

(m 1 1 1 k0)(m 1 2 1 k0)
5 (m 1 3 1 k0)k22 (A39)

Consider next the case that k9 # k 2 2. Using that, forto find
k9 # k 2 2,

L21
k0 5 1/4(21)k111/k! Ok

k050

(21)k0

(A40) (m 1 1 1 k0)k

(m 1 1 1 k0)k912
5 (m 1 3 1 k9 1 k0)k2k922 , (A47)

3Sk

k0
D (m 1 3 1 k0)k22 5 0,

we can write
where the last equality follows from Theorem (B1) for
i 5 k, k 5 22, and z 5 m 1 3. So, L21

k0 5 0 if k $ 2.
Expression (A35b) can be simplified by using L21

kk9 5 1/4(21)k(m 1 1 1 2k9) Ok
k05k921

(21)k0

(m 1 1 1 k0)(m 1 2 1 k0)k9(m 1 2 1 k9 1 k0)
3

1
(k 2 k0)!(k0 2 k9 1 1)!

(m 1 3 1 k9 1 k0)k2k922 .
5 (m 1 1 1 k0)k912 , (A41)

(A48)
(k0 2 k9 1 2)k9

k0!(k0 1 1)
5

1
(k0 2 k9 1 1)!

, (A42)

Introducing the new variable l 5 k0 2 k9 1 1 we can
which gives rewrite this expression as

L21
kk9 5 1/4(21)k(m 1 1 1 2k9) Ok

k05k921

(21)k0

(A43) L21
kk9 5

(21)k1k921

4(k 2 k9 1 1)!
(m 1 1 1 2k9) Ok2k911

l50
(21)l

(A49)
3

1
(k 2 k0)!(k0 2 k9 1 1)!

(m 1 1 1 k0)k

(m 1 1 1 k0)k912
.

3Sk 2 k9 1 1

l
D (m 1 2 1 2k9 1 l)k2k922 5 0,

Using that for k9 $ k 2 1, we have

where in the last equality we used (B1) with i 5 k 2(m 1 1 1 k0)k

(m 1 1 1 k0)k912
5

1
(m 1 1 1 k 1 k0)k92k12

, (A44)
k9 1 1, k 5 23, and z 5 m 1 2 1 2k9. This implies that
Lkk9 5 0 if k9 # k 2 2. Substituting the resulting expressions
for L21

kk9 into (A34) we finally getwe can write in this case
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=22Ymn 5H2[4(n 1 1)(n 1 2)]21Ymn 1 [4(n 1 1)(n 1 2)]21Ymn12 (n 5 m)

[4n(n 1 1)]21Ymn22 2 [2n(n 1 2)]21Ymn 1 [4(n 1 1)(n 1 2)]21Ymn12 (n $ m 1 2).
(A50)

This expression is identical to (16b). In the same manner Si 1 1

j
D5Si

j
D1S i

j 2 1
D, (B5)as described above we can derive (17b).

APPENDIX B
we can write

A Theorem on Pochhammer Symbols

The theorem we have used on several occasions in Ap- Oi11

j50
(21)jSi 1 1

j
D (z 1 j)i111kpendix A is

5 (i 1 1) Oi11

j51
(21)jS i

j 2 1
D (z 1 j)i1kOi

j50
(21)jSi

j
D (z 1 j)i1k

(B1)

1 (z 1 i 1 k) Oi

j50
(21)jSi

j
D (z 1 j)i1k (B6)

5H(21)i(k 1 1)i(z 1 i)k , k $ 0

0, k , 0,

1 (z 1 i 1 k) Oi11

j51
(21)jS i

j 2 1
D (z 1 j)i1kwhere i, j, and k are integers with i, j, and i 1 k larger

than or equal to 0 and z is any complex number. It can be
proved by induction in terms of i. For i 5 0 the statement

5 (z 1 i 1 k) Oi

j50
(21)jSi

j
D (z 1 j)i1k (B7)is clearly true. We will assume it to be true for any positive

value of i and then prove it to be true for i 1 1. Because

2 (z 1 2i 1 k 1 1) Oi

j50
(21)jSi

j
D (z 1 1 1 j)i1k ,(z 1 j)i111k 5 (z 1 i 1 j 1 k)(z 1 j)i1k , (B2)

we have
where we added the first and the third term on the right-
hand side of the first equality, and then changed the sum-
mation over j in the resulting term by a summation overOi11

j50
(21)jSi 1 1

j
D (z 1 j)i111k i 5 j 2 1 and changed back to the original summation

index j. In this stage we can use the induction assumption
to obtain

5 Oi11

j51
(21)jSi 1 1

j
D j(z 1 j)i1k (B3)

Oi11

j50
(21)jSi 1 1

j
D (z 1 j)i111k

1 (z 1 i 1 k) Oi11

j50
(21)jSi 1 1

j
D (z 1 j)i1k .

5 (21)i(k 1 1)i[(z 1 i 1 k)(z 1 i)k (B8)

2 (z 1 2i 1 k 1 1)(z 1 1 1 i)k].
Now, using that

This can be simplified by usingSi 1 1

j
D j 5 (i 1 1)S i

j 2 1
D, (B4)

(z 1 i 1 k)(z 1 i)k 5 (z 1 i)(z 1 1 1 i)k (B9)

to obtainand (see Abramowitz and Stegun [1, Chap. 3, Eq. (3.1.4)])
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